Innovation in sparkling wine production: Trust the yeast

Numerous recent studies have been playing with how yeast can work above and beyond the usual call of duty in sparkling wine production. The Australian Wine Research Institute’s (AWRI) superb yeast biologist Jenny Bellon continues to convince yeast to reshape itself to our needs by breeding across the usual species lines.* Hybrid yeast (open-access article) with a Saccharomyces cerevisiae strain as one parent and a Saccharomyces mikatae or other close cousin Saccharomyces species as the other, generate different secondary metabolites compared with conventional straight-up S. cerevisiae strains, and we somehow end up interpreting that difference as “complexity,” and liking it.

The goal in those cases is to produce new and different (and better) flavors by using these more metabolically complex yeasts for tirage or in-bottle fermentation.

The interesting thing about tirage yeast, though, is that they do a good portion of their winemaking work after they die. While alive, yeast are useful for their insides: the enzymes they house convert sugar to alcohol and numerous other valuable metabolites. In dying, yeast are useful for their outsides: they release mannoproteins from their cell walls that improve wine quality in numerous ways, by enriching mouthfeel, by stabilizing mousse, and by adding lovely bready or toasted aromas. (Find more detail on those effects in this embarrassingly badly written article from 2012).

When yeast cells die, they don’t just turn off; enzymes split open the cell from the inside (autolysis), releasing good-for-winemaking compounds. However, autolysis happens inefficiently under standard winemaking conditions: yeast are most inclined to self-sacrifice around pH 5 and at warmer temperatures; sparkling wine generally sits below pH 3 and is fermented cool. Here’s where two recent scientific studies about innovating in sparkling wine production meet.

Continue reading